Steam reforming of methanol over copper-containing catalysts: influence of support material on microkinetics
نویسندگان
چکیده
Steam reforming of methanol (SRM) was investigated over copper-containing catalysts supported on four different oxides and mixed oxides: Cu/ZnO/Al2O3, Cu/ZrO2/CeO2, Cu/SiO2 and Cu/Cr2O3/Fe2O3. After observing slight differences in the way of catalyst aging and experimental exclusion of mass transport limitation effects, a detailed kinetic study was carried out at 493 K. The dependence of the reaction rate on the molar ratio of methanol and water was determined as well as the influence of addition of inert nitrogen and the main reaction products hydrogen and carbon dioxide to the reactant mixture. Although there were remarkable differences in the catalytic activity of the samples, the main mechanistic steps reflected in the rate law appeared to be similar for all catalysts. The reaction rate is mainly determined by the methanol partial pressure, whereas water is not involved in the rate determining step, except over Cu/Cr2O3/Fe2O3, where several differences in the chemistry were observed. Hydrogen and carbon dioxide were found to inhibit the reaction. These results were confirmed by a DRIFTS study at 493 K using an equimolar reactant mixture and an excess of 4:1 of water and methanol, respectively. The same surface species could be identified on each catalyst but neither kinetic modelling nor the DRIFTS spectra could give a clear answer if the reaction pathway occurs via a dioxomethylene or a methyl formate species as intermediate. Similar activation energies of SRM confirm the assumption, that the surface chemistry of SRM over copper-based systems is independent of the catalyst support material.
منابع مشابه
Methanol Steam Reforming Catalyzing over Cu/Zn/Fe Mixed Oxide Catalysts
Methanol steam reforming plays a pivotal role to produce hydrogen for fuel cell systems in a low temperature range. To accomplish higher methanol conversion and lower CO production, the reaction was catalyzed by CuZnFe mixed oxides. Various ratios of Fe and Cu/Zn were coprecipitated in differential method to optimize the CuZnFe structure. The sample containing 45Cu50Zn5Fe (Wt. %) revealed its m...
متن کاملEffect of Pt on Zn-Free Cu-Al Catalysts for Methanol Steam Reforming to Produce Hydrogen
Steam reforming of methanol can be considered as an attractive reaction aiming at hydrogen production for PEM fuel cells. Although Cu/Al-contained catalysts are considerably evaluated in this reaction, further evaluation is essential to evaluate the impact of some promoters like Pt in order to find a comprehensively optimized catalyst. Pt promoter is employed with different methods in this ...
متن کاملHydrogen production by steam reforming of dimethyle ether over Cu/ZnO/Al2O3 and H-ZSM-5 catalysts: An experimental and modeling study
Hydrogen was produced by steam reforming of dimethyl ether (DME) using a physical mixture of commercial HZSM-5 zeolite (for DME hydrolyzing) and Cu/ZnO/Al2O3 (for methanol steam reforming) as a catalyst in a fixed bed reactor. The experiments were performed at atmospheric pressure and in a temperature range from 270 to 310 °C. The effects of feed temperature and gas hourly space velocity (GHSV)...
متن کاملIn situ investigations of structure-activity relationships of a Cu/ZrO2 catalyst for the steam reforming of methanol
Structure-activity relationships of a nanostructured Cu/ZrO2 catalyst for the steam reforming of methanol (MSR) were investigated under reaction conditions by in situ X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) combined with on-line mass spectrometry (MS). Temperature programmed activation by reduction in hydrogen or by reduction in a mixture of methanol and water (feed) was...
متن کاملMethanol steam reforming; Effects of various metal oxides on the properties of a Cu-based catalyst
Ternary Cu/ZnO/metal oxide catalysts are prepared through the co-precipitation method under strict control of parameters like pH, calcination conditions, and precipitation temperature in a systematic manner. The metal oxides applied in this study consist of Al2O3, ZrO2, La2O3 and Ce2O3. The distinction of this work in comparison with similar research is a comprehensive investigatation of the ca...
متن کامل